您所在的位置:首页 » 哈尔滨软件检测单位 软测咨询 深圳艾策信息科技供应

哈尔滨软件检测单位 软测咨询 深圳艾策信息科技供应

上传时间:2025-04-18 浏览次数:
文章摘要:    什么是软件测试通过手工和自动化工具对被测对象进行检测,验证实际结果和预期结果之间的差异。软件测试的原则1测试是为了证明软件存在缺陷2测试应该尽早介入3注意测试缺陷的群集效应80-20

    什么是软件测试通过手工和自动化工具对被测对象进行检测,验证实际结果和预期结果之间的差异。软件测试的原则1测试是为了证明软件存在缺陷2测试应该尽早介入3注意测试缺陷的群集效应80-204杀虫剂现象5合法数据和不合法数据和边界值,网络异常和电源断电等6回归测试防止出现更多问题7妥善保存一切测试文档软件测试的目的1暴露软件中的缺陷和BUG2记录软件运行中产生的一些数据,为开发提供改良的数据支持为什么需要软件测试1功能实现且正确执行2软件运行的信息数据如果一个产品开发完成之后发现了很多问题,说明此软件开发过程很可能是有缺陷的,因此,软件测试的目的是保证整个软件开发过程是高质量的。测试分类1单元测试分单元2集成测试多个单元3系统测试用户角度-功能主体4验证测试α测试-内测β测试-公测UAT测试-客户验收使用系统测试分类1功能测试2性能测试3安全测试4兼容性测试测试方法1按照测试对象分类白盒测试黑盒测试灰盒测试2按照测试对象是否执行分类静态测试动态测试3按照测试手段进行分类手工测试灵活改变测试操作和环境自动化测试1自己写脚本2第三方工具进行测试软件质量1维护性2移植性3效率性4可靠性5易用性6功能性软件测试流程1需求分析2设计用例3评审用例4。数据驱动决策:艾策科技如何提升企业竞争力。哈尔滨软件检测单位

哈尔滨软件检测单位,测评

    将三种模态特征和三种融合方法的结果进行了对比,如表3所示。从表3可以看出,前端融合和中间融合较基于模态特征的检测准确率更高,损失率更低。后端融合是三种融合方法中较弱的,虽然明显优于基于dll和api信息、pe格式结构特征的实验结果,但稍弱于基于字节码3-grams特征的结果。中间融合是三种融合方法中**好的,各项性能指标都非常接近**优值。表3实验结果对比本实施例提出了基于多模态深度学习的恶意软件检测方法,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过三种融合方式(前端融合、后端融合、中间融合)集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性。实验结果显示,相对**且互补的特征视图和不同深度学习融合机制的使用明显提高了检测方法的检测能力和泛化性能,其中较优的中间融合方法取得了%的准确率,对数损失为,auc值为,各项性能指标已接近**优值。考虑到样本集可能存在噪声,本实施例提出的方法已取得了比较理想的结果。由于恶意软件很难同时伪造多个模态的特征,本实施例提出的方法比单模态特征方法更鲁棒。以上所述*为本发明的较佳实施例而已,并非用于限定本发明的保护范围。成都第三方软件评测机构渗透测试报告暴露2个高危API接口需紧急加固。

哈尔滨软件检测单位,测评

    12)把节装入到vmm的地址空间;(13)可选头部的sizeofcode域取值不正确;(14)含有可疑标志。此外,恶意软件和良性软件间以下格式特征也存在明显的统计差异:(1)证书表是软件厂商的可认证的声明,恶意软件很少有证书表,而良性软件大部分都有软件厂商可认证的声明;(2)恶意软件的调试数据也明显小于正常文件的,这是因为恶意软件为了增加调试的难度,很少有调试数据;(3)恶意软件4个节(.text、.rsrc、.reloc和.rdata)的characteristics属性和良性软件的也有明显差异,characteristics属性通常**该节是否可读、可写、可执行等,部分恶意软件的代码节存在可写异常,只读数据节和资源节存在可写、可执行异常等;(4)恶意软件资源节的资源个数也明显少于良性软件的,如消息表、组图表、版本资源等,这是因为恶意软件很少使用图形界面资源,也很少有版本信息。pe文件很多格式属性没有强制限制,文件完整性约束松散,存在着较多的冗余属性和冗余空间,为pe格式恶意软件的传播和隐藏创造了条件。此外,由于恶意软件为了方便传播和隐藏,尽一切可能的减小文件大小,文件结构的某些部分重叠,同时对一些属性进行了特别设置以达到anti-dump、anti-debug或抗反汇编。

    置环境操作系统+服务器+数据库+软件依赖5执行用例6回归测试及缺陷**7输出测试报告8测试结束软件架构BSbrowser浏览器+server服务器CSclient客户端+server服务器1标准上BS是在服务器和浏览器都存在的基础上开发2效率BS中负担在服务器上CS中的客户端会分担,CS效率更高3安全BS数据依靠http协议进行明文输出不安全4升级上bs更简便5开发成本bs更简单cs需要客户端安卓和ios软件开发模型瀑布模型1需求分析2功能设计3编写代码4功能实现切入点5软件测试需求变更6完成7上线维护是一种线性模型的一种,是其他开发模型的基础测试的切入点要留下足够的时间可能导致测试不充分,上线后才暴露***开发的各个阶段比较清晰需求调查适合需求稳定的产品开发当前一阶段完成后,您只需要去关注后续阶段可在迭代模型中应用瀑布模型可以节省大量的时间和金钱缺点1)各个阶段的划分完全固定,阶段之间产生大量的文档,极大地增加了工作量。2)由于开发模型是线性的,用户只有等到整个过程的末期才能见到开发成果,从而增加了开发风险。3)通过过多的强制完成日期和里程碑来**各个项目阶段。4)瀑布模型的突出缺点是不适应用户需求的变化瀑布模型强调文档的作用,并要求每个阶段都要仔细验证。基于 AI 视觉识别的自动化检测系统,助力艾策实现生产线上的零缺陷品控目标!

哈尔滨软件检测单位,测评

    所述生成软件样本的dll和api信息特征视图,是先统计所有类别已知的软件样本的pe可执行文件引用的dll和api信息,从中选取引用频率**高的多个dll和api信息;然后判断当前的软件样本的导入节里是否存在选择出的某个引用频率**高的dll和api信息,如存在,则将当前软件样本的该dll或api信息以1表示,否则将其以0表示,从而对当前软件样本的所有dll和api信息进行表示形成当前软件样本的dll和api信息特征视图。进一步的,所述生成软件样本的格式信息特征视图,是从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,形成当前软件样本的格式信息特征视图。进一步的,所述从当前软件样本的pe格式结构信息中选取可能区分恶意软件和良性软件的pe格式结构特征,是从当前软件样本的pe格式结构信息中确定存在特定格式异常的pe格式结构特征以及存在明显的统计差异的格式结构特征;所述特定格式异常包括:(1)代码从**后一节开始执行,(2)节头部可疑的属性,(3)pe可选头部有效尺寸的值不正确,(4)节之间的“间缝”,(5)可疑的代码重定向,(6)可疑的代码节名称,(7)可疑的头部***,(8)来自,(9)导入地址表被修改,(10)多个pe头部,(11)可疑的重定位信息,。艾策检测针对智能穿戴设备开发动态压力测试系统,确保人机交互的舒适性与安全性。贵阳软件验收测试机构

用户隐私测评确认数据采集范围超出声明条款3项。哈尔滨软件检测单位

    3)pe可选头部有效尺寸的值不正确,(4)节之间的“间缝”,(5)可疑的代码重定向,(6)可疑的代码节名称,(7)可疑的头部***,(8)来自,(9)导入地址表被修改,(10)多个pe头部,(11)可疑的重定位信息,(12)把节装入到vmm的地址空间,(13)可选头部的sizeofcode域取值不正确,(14)含有可疑标志。存在明显的统计差异的格式结构特征包括:(1)无证书表;(2)调试数据明显小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics属性异常,(4)资源节的资源个数少于正常文件。生成软件样本的字节码n-grams特征视图,是统计了每个短序列特征的词频(termfrequency,tf),即该短序列特征在软件样本中出现的频率。先从当前软件样本的所有短序列特征中选取词频tf**高的多个短序列特征;然后计算选取的每个短序列特征的逆向文件频率idf与词频tf的乘积,并将其作为选取的每个短序列特征的特征值,,表示该短序列特征表示其所在软件样本的能力越强;**后在选取的词频tf**高的多个短序列特征中选取,生成字节码n-grams特征视图。:=tf×idf;tf(termfrequency)是词频,定义如下:其中,ni,j是短序列特征i在软件样本j中出现的次数,∑knk,j指软件样本j中所有短序列特征出现的次数之和。哈尔滨软件检测单位

深圳艾策信息科技有限公司
联系人:邓琳
咨询电话:0755-18098929
咨询手机:18098929458
咨询邮箱:9681661@qq.com
公司地址:深圳市南山区粤海街道高新区社区白石路3609号深圳湾科技生态园二区9栋A708

免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。

友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。

图片新闻

  • 暂无信息!